I Tower
Final

Outline

e Project Introduction
e Game Design

e Agent Design

e Conclusion

e Demo

ame Introduction

|Grass ‘ ‘#oflives ‘

@25E)

— 1
e .
@) ——| Fire Tower
2 - @

K

L W0

Game workflow

V

Unity Logo

Main Menu
—

v v v
Options Play Quit
Main Game
Music Volumn Setting Scound Volumn Setting Place Towers .
Start Wave
Enemy moving|
Next Wave v

Options

-y Upgrade Towers

I Pause
Yes @
No
ry
7

Game Over

Restart

Project Objective

Create an agent that could learn to play
the game wisely (higher current money
and life at the same time)

Factors to be considered: °

4
1. Current money: numbers 5
2. Current monsters: numbers and types 6
3. Towers: costs and types 7

Expected agent behaviors:

path | | monster tower Attack area

1. Select the proper types of towers
2. Place towers at proper time and location
3. Upgrade properties of the towers.

Prior Research

- Game Research:

Jesse Huang, 2D-Tower-Defense-Demo https://github.com/JessHua159,
2017

- Machine Learning Mechanism:
1. CNN classification model
2. NN regression model

PrOj e Ct D Eta i ls Place tower |—=| Coordination (X,Y), Tower type |

Generate 3000 tciwer placements T]—’[Coordination (X.Y)]
1 . Ga me M Od Ifl Cati on [Send the placements to the game] Upgrade tower H Coordination (X,Y), Upgrade level J
2. Communication Design , .‘
3 Raw Data CO | | ectl on [GeizﬁQGQl mples H Stored in dataset]
4, Data P re- p roceSSi ng [Build CNN model]—>[Regression model m
5

Lowest val loss]

[Train the data H Store the best weight file

/

[Verify data]——[Generate 300 tower placements]_[Filter the data with model]

Machine Learning Applice l <

Highest R2 value]

Wave 8

‘ ___-_-_-_-_-i

!- o @ | H

-

g:> Place ower]ﬂ

T W
m
&
— B
D :
= H
3
g |
o
[|
- ..
D >
S 3z
whd S % d
=528 .
dc c o 2 3)
2 5558 ¢
L 2 5 : u
= 7 A o o 0]
(V) 7 : e
() v : r W
2 5 5 ¢ 8, £
TS 5 & g o2 Sy
Q@ Y £ £ ¢ g8:s3
= z 3 it
N : N = ua”
s S 8 2 2 oglgs

1
2.
3

Without dependency

With dependency

Game Modification - Others

Events

Before

Adjustments

After

Error handling

Monsters stuck at
birthplace sometimes

Set a max threshold
time for each wave to
auto restart

Game and ML
process go smoothly

Game termination

Game terminated
when no money or
lives left. Max
survived wave number
is 20

Increase initial money
and lives dramatically

Max survived wave
number is 22

Communication Design

TCP
connected
) memory
Set initial parameters - JSON e e
Random generator
OK

JSON _ T

Disk
Write to memo
Calculate the reward = JSON
Random generator JSON
Exit normally - JSON
Write to disk

Terminate

Raw Data Collection

Over 3,000 raw dataset for neural network regression training

Data Contents:

1. Game map: 8*12%4 3D matrix containing tower type and coordinates
2. Wave number to store the state of the game
3. Total life remaining

3000 samples Wave number II

[Random task Place tower

Sell tower m
: TIeTer— x[Wave number]

»
>

Data Pre-processing

3,000 groups of carefully selected data based on the following criteria:

1. Eliminate the incorrect data due to the game bug
2. Normalized the tower placement data using minmax scaler normalization
3. Computed the reward for each wave

Reward = Total life remaining + Monsters' shortest remaining distance to the end

= F(game map, wave number)

ML Application

CNN Classification Model (Before Midterm)

Deep Neural Network Regression Model

e Use # of monsters killed & money
earned as reward

Game map as a image

Different tower as different channels
Binary classification

Performance falls after waves

e Use life remain & distance of
monsters passed as reward

Game map as a image

Different tower as different channels
Regression to predict the reward
Performance significantly improved

Input shape = (8, 12, 5) |
Con2D(32, (3,3))=relu

MaxPooling2D(3,3)

[Input shape = (8, 12, 4) |

Reward = Total life remaining +

Con2D(64, (3,3))=relu

| Dense(2048)=relu

Monsters' min(distance)

MaxPooling2D(2,2
I:> [Dense(2048)=relu

EEErE

Con2D(64, (3,3))=relu [Dense(2048)=relu
Flatt
(Do)]
Dense(64)=relu

Dropout=0.5
Dense(2)

Classify model

Regression model

= F(game_map, wave_number)

ML Application

Hyperparameter Tuning for the Deep Neural
Network Regression Model

R-squared: It provides a measure of how well
observed outcomes are replicated by the model

g :

JSON ? Load JSON from disk | Cpatarape= @, 2.4)
[JSON Dense(2048)=relu

Parse JSON

JSON

3000

samples Map

3D array

Disk ‘

;/\1 Write weight file to disk _

Hyperparameters:

of neurons per layer
of layers

Drop out rate
Activation function
Optimizer

of epoch

R2 value VS Epoch

0.8

o
o

R2 value
I

ES

L

0.2

0.04,

—— r2 value

Epoch

T T
25 30

ML Application

Game Strategy Generation Wave 0

JSON
JSON

JSON

3000
samples

Disk

Weight

e

1

[Input shape = (8, 12, 4)]
Dense(2048)=relu

Dense(2048)=relu

7} Load JSON from disk |

Parse JSON

v

Map

3D array

Flatten

\ Write weight file to disk

Wave 2

Wave 4 Wave 6

Load weight file from disk |

Disk

Weight file

Wave number

Random task

1000 samples

o et]\‘

Upgrade tower

Wave 8
Q)

Q.

1000
samples

[Input shape = (8, 12,

4 |

Dense(2048)=relu
Dense(2048)=relu
Dense(2048)=relu

Dense(1)=relu

1000
samples

Performance Evaluation and Conclusion

Maximum survivable wave
CNN Model 20
Deep Neural Network Regression Model 22
Survival rate: before train VS after train Reward VS Wave
1.0 A
80 t s
0.8 1 [
60 °
g 0.6 "
L s
: o]
3 0.4 S
a
[
— 20 4 :
— before train before training : ;
0.0 — aftertrain 0- after training
25 50 75 100 125 150 175 200 225 25 50 75 100 125 150 175 200 225

Wave Wave

Limitations & Future Work

- Fix the bug caused the game to freeze.

- Collect more training data after the bug has been fixed.

- Explore to improve the model performance using newly collected
bug-free training data.

- Extend our model to more maps.

Demo Video

Thanks

