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Project Objective

Create an agent that could learn to play
the game wisely (higher current money
and life at the same time)

Factors to be considered: °

4
1. Current money: numbers 5
2. Current monsters: numbers and types 6
3. Towers: costs and types 7

Expected agent behaviors:

path | | monster tower Attack area

1. Select the proper types of towers
2. Place towers at proper time and location
3. Upgrade properties of the towers.




Prior Research

- Game Research:

Jesse Huang, 2D-Tower-Defense-Demo https://github.com/JessHua159,
2017

- Machine Learning Mechanism:
1. CNN classification model
2. NN regression model
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Game Modification - Others

Events

Before

Adjustments

After

Error handling

Monsters stuck at
birthplace sometimes

Set a max threshold
time for each wave to
auto restart

Game and ML
process go smoothly

Game termination

Game terminated
when no money or
lives left. Max
survived wave number
is 20

Increase initial money
and lives dramatically

Max survived wave
number is 22




Communication Design

TCP
connected
) memory
Set initial parameters - JSON e e
Random generator
OK

JSON _ T

Disk
Write to memo
Calculate the reward = JSON
Random generator JSON
Exit normally - JSON
Write to disk

Terminate



Raw Data Collection

Over 3,000 raw dataset for neural network regression training

Data Contents:

1. Game map: 8*12%4 3D matrix containing tower type and coordinates
2. Wave number to store the state of the game
3. Total life remaining

3000 samples Wave number II
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Data Pre-processing

3,000 groups of carefully selected data based on the following criteria:

1. Eliminate the incorrect data due to the game bug
2. Normalized the tower placement data using minmax scaler normalization
3. Computed the reward for each wave

Reward = Total life remaining + Monsters' shortest remaining distance to the end

= F(game map, wave number)



ML Application

CNN Classification Model (Before Midterm)

Deep Neural Network Regression Model

e Use # of monsters killed & money
earned as reward

Game map as a image

Different tower as different channels
Binary classification

Performance falls after waves

e Use life remain & distance of
monsters passed as reward

Game map as a image

Different tower as different channels
Regression to predict the reward
Performance significantly improved

Input shape = (8, 12, 5) |
Con2D(32, (3,3))=relu

MaxPooling2D(3,3)

[ Input shape = (8, 12, 4) |

Reward = Total life remaining +

Con2D(64, (3,3))=relu

| Dense(2048)=relu

Monsters' min(distance)

MaxPooling2D(2,2
I:> [Dense(2048)=relu

EEErE

Con2D(64, (3,3))=relu [ Dense(2048)=relu
Flatt
(Do) ]
Dense(64)=relu

Dropout=0.5
Dense(2)

Classify model

Regression model

= F(game_map, wave_number)




ML Application

Hyperparameter Tuning for the Deep Neural
Network Regression Model

R-squared: It provides a measure of how well
observed outcomes are replicated by the model
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ML Application
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Performance Evaluation and Conclusion

Maximum survivable wave
CNN Model 20
Deep Neural Network Regression Model 22
Survival rate: before train VS after train Reward VS Wave
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Limitations & Future Work

- Fix the bug caused the game to freeze.

- Collect more training data after the bug has been fixed.

- Explore to improve the model performance using newly collected
bug-free training data.

- Extend our model to more maps.



Demo Video
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